Neurochemical Modulation of Cardiorespiratory Control (NMCC) Lab
"We study autonomic control of cardiorespiratory function through brainstem circuit analysis and neurotransmitter modulation mechanisms."
Recent Publications
Orexin 1 receptors in the paraventricular nucleus of the hypothalamus (PVN) facilitate the peripheral chemoreflex
Ben Musa, R., Li, D.-P., Kline, D. D., Hasser, E. M., & Cummings, K. J. (2024). Physiology, 39(S1), 850. American […]
A serotonin-deficient rat model of neurogenic hypertension: Influence of sex and sympathetic vascular tone
Spinieli, R. L., Cornelius-Green, J., & Cummings, K. J. (2022). Journal of Neurophysiology, 128(5), 1199-1206.
The effect of orexin on the hypoxic ventilatory response of female rats is greatest in the active phase during diestrus
Ben Musa, R., Cornelius-Green, J., Hasser, E. M., & Cummings, K. J. (2023). Journal of Applied Physiology, 134(3), 638-648.
Orexin facilitates the hypoxic ventilatory response via the activation of corticotropin-releasing hormone neurons that project to the nucleus of the solitary tract
Ben Musa, R., Cornelius-Green, J., Hasser, E., Kline, D., & Cummings, K. (2023). Physiology, 38(S1), 5733602.
Orexin Facilitates the Peripheral Chemoreflex via Corticotropin-Releasing Hormone Neurons Projecting to the Nucleus of the Solitary
Ben Musa, R., Cornelius-Green, J., Zhang, H., Li, D.-P., Kline, D. D., Hasser, E. M., & Cummings, K. J. (2024). […]
Paraventricular nucleus projections to the nucleus tractus solitarii are essential for full expression of hypoxia‐induced peripheral chemoreflex responses
Ruyle, B. C., Lima-Silveira, L., Martinez, D., Cummings, K. J., Heesch, C. M., Kline, D. D., & Hasser, E. M. […]
Altered 5-HT2A/C receptor binding in the medulla oblongata in the sudden infant death syndrome (SIDS) …
Cummings, K. J., Leiter, J. C., Trachtenberg, F. L., Okaty, B. W., Darnall, R. A., Haas, E. A., Harper, R. […]
About Us

Primarily located in the brainstem (medulla oblongata), these clusters of neurons control vital cardiorespiratory functions and dynamically adapt to physiological challenges, maintaining homeostasis during stress or environmental changes, including hypoxia.
The Cummings Lab focuses on understanding how the brainstem integrates signals from central autonomic pathways to regulate critical functions such as blood pressure and heart rate. Our research investigates the impact of neurochemical imbalances on these pathways, leading to maladaptive cardiovascular and respiratory responses.
Dr. Kevin J. Cummings leads a multidisciplinary team of postdoctoral researchers and collaborators in neuroscience, electrophysiology, and autonomic regulation.
Using advanced techniques including In Vivo Rodent Models, Electrophysiology, Neuroimaging, Nerve Recordings, Optogenetics, Chemogenetics,
Electrophysiology, Photometry, In Vivo monitoring of blood pressure, heart rate, and respiratory function in awake, behaving rodents, we aim to uncover deeper insights into disorders such as Sudden Infant Death Syndrome (SIDS) and cardiorespiratory maladaption during hypoxia in both infants and adults.
Science News
Scientists just simulated the “impossible” — fault-tolerant quantum code cracked at last
A multinational team has cracked a long-standing barrier to reliable quantum computing by inventing an algorithm that lets ordinary computers […]
3D printing could enable a long-term treatment for type 1 diabetes
Small, 3D-printed devices, designed to be implanted directly under the skin, could allow people with type 1 diabetes to produce […]
Quantum computers are surprisingly random – but that’s a good thing
While randomising a deck of cards gets more difficult as you add more cards, it turns out that the same […]
Do we grow new brain cells as adults? The answer seems to be yes
Scientists have found evidence of new brain cells sprouting in adults – a process that many thought only occurred in […]
How vaccine recommendations have changed in the US
The US Advisory Committee on Immunization Practices voted in June to stop recommending certain kinds of flu vaccines, a notable […]
Weird ‘harmless’ microbes may play a pivotal role in colorectal cancer
Single-celled organisms called archaea aren’t generally thought to cause human disease, but one species has been implicated in colorectal cancer
Collaborate With Us
We actively seek partnerships with researchers, institutions, and clinical professionals to foster collaboration and advance scientific discovery. We welcome opportunities to share expertise, contribute to ongoing projects, and explore innovative research directions. We invite proposals for joint studies, grant applications, and academic exchanges, recognizing the value of diverse perspectives in driving impactful research. Our multidisciplinary team is committed to collaborative efforts that enhance the scope and depth of our investigations.
Current opportunities:
We are constantly seeking passionate and driven researchers to join our dynamic team. We provide exciting opportunities for graduate students, postdoctoral researchers, and lab assistants to collaborate on cutting-edge projects and contribute to groundbreaking discoveries. Join us to advance your career in a supportive and innovative research environment.
